Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 5. Distributions of Functions of Random Variables

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Let X be a random variables of the continuous type. If we consider a function of X, say $Y=u(X)$, then Y must also be a random variable that has its own distribution. If we can find its distribution function, say,

$$
G(y)=\mathbb{P}(Y \leq y)=\mathbb{P}(u(X) \leq y),
$$

then its pdf is given by $g(y)=G^{\prime}(y)$.

Example 5.1-1 Let X have a gamma distribution with pdf

$$
f(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x / \theta}, \quad 0<x<\infty
$$

where $\alpha>0, \theta>0$. Let $Y=e^{X}$, so that the support of Y is $1<y<\infty$. For each y in the support, the distribution function of Y is

$$
G(y)=\mathbb{P}(Y \leq y)=\mathbb{P}\left(e^{X} \leq y\right)=\mathbb{P}(X \leq \ln y)
$$

That is,

$$
G(y)=\int_{0}^{\ln y} \frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x / \theta} d x
$$

and thus the pdf $g(y)=G^{\prime}(y)$ of Y is

$$
g(y)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}}(\ln y)^{\alpha-1} e^{-(\ln y) / \theta}\left(\frac{1}{y}\right), \quad 1<y<\infty .
$$

Equivalently, we have

$$
g(y)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} \frac{(\ln y)^{\alpha-1}}{y^{1+1 / \theta}} \quad 1<y<\infty
$$

which is called a loggamma pdf.

Determination of $g(y)$ from $f(x)$

Let X be a continuous r.v. with pdf $f(x)$. If the transformation $y=u(x)$ is one-to-one and has the inverse transformation

$$
x=u^{-1}(y)=v(y)
$$

then the pdf of Y is given by

$$
g(y)=f(v(y))\left|v^{\prime}(y)\right|, \quad y \in S_{y},
$$

where S_{y} is the support of Y.

Example 5.1-2 Let $Y=2 X+3$. Find the pdf of Y if X is a uniform r.v. over $(-1,2)$.
Ans: $g(y)= \begin{cases}\frac{1}{6}, & \text { if } 1<y<7, \\ 0, & \text { otherwise } .\end{cases}$

Example 5.1-3 Let X have the pdf $f(x)=x e^{-x^{2} / 2}, 0<x<\infty$. Find the pdf of $Y=X^{2}$.
Ans: $g(y)=\cdots$

Here are some examples when the transformation $Y=u(X)$ is not one-to-one.

Example 5.1-4 Let $Y=X^{2}$. Find the pdf of Y when the distribution of X is $N(0,1)$.
Ans. $g(y)=\frac{1}{\sqrt{2 \pi y}} \exp (-y / 2), \quad 0<y<\infty$.

Example 5.1-5 Let $Y=X^{2}$. Find the pdf of Y when the distribution of X is

$$
f(x)=\frac{x^{2}}{3}, \quad-1<x<2
$$

Ans. $g(y)= \begin{cases}\frac{\sqrt{y}}{3}, & \text { if } 0<y<1 \\ \frac{\sqrt{y}}{6}, & \text { if } 1<y<4 . .\end{cases}$

Discuss Theorem 5.1-1 about the simulation of r.v.'s.

Exercises from textbook: Section 5.1: 1, 3, 4ab, 5, 10, 11, 15

